Disease detection, diagnosis, and treatment can all be done with the help of digitalized medical images. Macroscopic medical images are images obtained using ionizing radiation or magnetism that identify organs and body structures. In recent years, various computational tools such as databases, distributed processing, digital image processing, and pattern recognition in digital medical images have contributed to the development of Computer-Aided Diagnosis (CAD), which serves as an auxiliary tool in health care. The use of various architectures based on convolutional neural networks (CNNs) for the automatic detection of diseases in medical images is proposed in this work. Different types of medical images are used in this work, such as chest tomography for identifying types of tuberculosis and chest X-rays for detecting pneumonia to solve the same number of classification problems or detect patterns associated with diseases. Finally, an algorithm for automatic registration of thoracic regions is proposed, which intrinsically identifies the translation, scale, and rotation that align the thoracic regions in X-ray images.
Loading....